

Comprehensive Chiral Amino Acid Method for Future Enceladus Astrobiology Missions

Jessica S. Creamer¹, Maria F. Mora¹, Nathan J. Oborny¹, Antonio J. Ricco², Richard C. Quinn², and Peter A. Willis¹

- ¹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.
- ² NASA Ames Research Center, Moffett Field, California

© 2019. All rights reserved

Amino acids and Enceladus?

Cassini revealed

- Water ice and water vapor
- Simple organic molecules in the gas phase and heavy organics in dust
- Tiny grains of silica
- Unexpectedly large amounts of hydrogen gas.

Active ocean-rock interface

- Generating amino acids?
- Origin of life or prebiotic chemistry?

1. Type

Most abundant amino acids found in biotic and abiotic samples

1. Type

Abiotic AIB Iva Proteinogenic Ala, Gly Glu, Asp Leu, Val, Ser Biotic Biotic His

2. Relative abundance to Gly

Most abundant amino acids found in biotic and abiotic samples

1. Type

2. Relative abundance to Gly

Most abundant amino acids found in biotic and abiotic samples

1. Type

2. Relative abundance to Gly

Most abundant amino acids found in biotic and abiotic samples

3. Chirality

Molecular Property (amino acid chirality)

Voltage driven separations: Capillary and microchip electrophoresis

Separation is needed to individually address many species in a mixture with chiral resolution

Benefits of Electrophoresis:

- High efficiency separations
- Low limits of detection (ppt) when coupled to LIF
- Used on a wide variety of samples
- Miniaturizable platform

Voltage driven separations: Capillary and microchip electrophoresis

Voltage driven separations: Capillary and microchip electrophoresis

Separation based on size:charge

Jet Propulsion Laboratory California Institute of Technology

Voltage driven separations: Capillary and microchip electrophoresis

Separation based on size:charge

Electrophoretogram for identification and quantification

Most capable published method for detection of chiral amino acids

Enhanced Resolution of Chiral Amino Acids with Capillary Electrophoresis for Biosignature Detection in Extraterrestrial Samples

Jessica S. Creamer, Maria F. Mora, and Peter A. Willis*

Peaks:

- 1. D-His
- 2. D-Leu
- 3. D-Val
- IS. L-β-
- HomoLeu
- 4. L-His
- 5. L-Leu
- 6. D-Ser
- 7. GABA;
- 8. L-Val
- O. L-Va
- 9. D-Ala
- 10. L-Ser
- 11. β-Ala
- 40 | 41
- 12. L-Ala
- 13. Gly
- *Dye side products

Updated LODs

Peak Number	Amino acid	LOD (nM)
1	D-His	3
2	D-Leu	1
3	D-Val	1
4	L-His	1
5	L-Leu	1
6	D-Ser	1
7	GABA	1
8	L-Val	1
9	D-Ala	10
10	L-Ser	10
11	β-Ala	25
12	L-Ala	25
13	Gly	3

Most capable published method for detection of chiral amino acids

Updated LODs

Peak Number	Amino acid	LOD (nM)
1	D-His	3
2	D-Leu	1
3	D-Val	1
4	L-His	1
5	L-Leu	1
6	D-Ser	1
7	GABA	1
8	L-Val	1
9	D-Ala	10
10	L-Ser	10
11	β-Ala	25
12	L-Ala	25
13	Gly	3

Mission Concept

Submitted by:

NASA Ames Research Center (ARC)

In partnership with:

NASA Goddard Space Flight Center (GSFC)

Johns Hopkins University (JHU) / Applied Physics Lab (APL)

Jet Propulsion Lab (JPL)

University of Michigan, Space Physics Research Lab (SPRL)

Mission Concept

Sample collection from plume

Sample handling system (SPLice) including reagent storage

Capillary electrophoresis for analysis of polar organics

Increasing the TRL of CE-LIF

Demonstrating stability of the hardware and chemicals under spaceflight environments

- Radiation
- Temperature

Increasing the TRL of CE-LIF

Demonstrating stability of the hardware and chemicals under

spaceflight environments

Radiation

Temperature

Nathan Oborny Radiation Tolerant Hardware Poster 139-146 Tonight! 5:00 – 7:00pm

Fluorescent Dye

Fluorescent Dye

Fluorescent Dye

Fluorescent Dye

Background electrolyte

3 powdered reagents

Aqueous solution of 6% organic solvent in water

Fluorescent Dye

Background electrolyte

80 mM sodium tetraborate

30 mM sodium taurocholate

30 mM γ-cyclodextrin

OH HO OH HO

Water with 6% acetonitrile

 $H \sim C - C \equiv N$

Likely stored separately to prevent precipitation during a long transit

3 powdered reagents

Aqueous solution of 6% organic solvent in water

Radiation tolerance

Europa represents the high end for radiation exposure during a mission

From the Europa Lander SDT Report:

Juno, and planned for the EMFM. Shielding by the lander vault would decrease the expected TID to 150 krad (Si). All electronics within the vault must be rated to 300 krad in order to maintain a radiation design factor of two (RDF = 2). (Hand et al. 2017)

Pre-Decisional Information -- For Planning and Discussion Purposes Only

Fluorescent dye irradiation

- Retained fluorophore
- Retained succinimidyl ester leaving group needed to react with amino acids
- No interfering peaks due to radiolysis

Creamer et al. Electrophoresis. 2018, 39, 2864-2871 © 2019. All rights reserved

Peaks: 1. D-His; 2. D-Leu; 3. D-Val; 4. L-His; 5. L-Leu; 6. D-Ser; 7. GABA; 8. L-Val; 9. D-Ala; 10. L-Ser; 11. β-Ala; 12. L-Ala; 13. Gly; *Dye side products

Background Electrolyte Irradiation

Creamer et al. Electrophoresis. 2018, 39, 2864-2871 © 2019. All rights reserved

Peaks: 1. D-His; 2. D-Leu; 3. D-Val; 4. L-His; 5. L-Leu; 6. D-Ser; 7. GABA; 8. L-Val; 9. D-Ala; 10. L-Ser; 11. β-Ala; 12. L-Ala; 13. Gly; *Dye side products

Fluorescent dye is sensitive to increased temperatures

Recommended storage below -5 °C for one year

Tested dye after 1 month, 6 months, 1 year, and 2 years in storage

Tested dye after 1 month, 6 months, 1 year, and 2 years in storage

Tested dye after 1 month, 6 months, 1 year, and 2 years in storage

Conclusions

- CE-LIF is a separation technique that can simultaneously detect multiple astrobiologically relevant amino acids, with chiral resolution, and low limits of detection (≥ 1 nM)
- The chemicals needed to perform this CE-LIF analysis remain stable under radiation up to 300 krad
- Thermal control in the vault is needed to prevent the dye from experiencing more than 1 month above 60 °C
- This work represents a significant step forward towards validating the CE-LIF technique for spaceflight

Acknowledgments

- JPL NEXT Program funding the "OWLS – Ocean Worlds Surveyor" project
- NASA-PICASSO Program funding for the "Microfluidic Life Analyzer" project
- NASA Postdoctoral Program

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.